9/26/19 - Warm Up Problem
Each statement is false. Think of a counterexample for each one to show that it is false.

1. If the product of two numbers is positive, then both of the number are positive.

$$
-2 \cdot-2=4
$$

2. The product of two positive numbers is always greater than both of the numbers.

$$
4 \cdot \frac{1}{2}=2
$$

Concept 6 Worksheet \#1 (front)
REASONING IN ALGEBRA
Fill in the missing justifications for each proof. .

1. Given: $\frac{4 x+6}{2}=9$
Prove: $x=3$
2. Given: $8 x-5=2 x+1$
Prove: $x=1$

Statement	Justification
1. $\frac{4 x+6}{2}=9$	
2. $4 x+6=18$	
3. $4 x=12$	
4. $x=3$	

3. Given: $5(n-3)=4(2 n-7)-14$

Prove: $n=9$

Statement	Justification
1. $5(n-3)=4(2 n-7)-14$	
2. $5 n-15=8 n-28-14$	
3. $5 n-15=8 n-42$	Sinnpify
4. $5 n=8 n-27$	
5. $-3 n=-27$	
6. $n=9$	

5. Given: $5(n-1)=20$

Prove: $n=5$

Statement	Justification
1. $8 x-5=2 x+1$ $-2 x \quad-2 x$	Giver
2. $6 x-5=1$	Subir . Prop.
3. $6 x=6$	Adaithon Prep
4. $x=1$	Disision Prop.

4. Given: $2 x-15-x=21+10 x$ Prove: $x=-4$

Statement	Justification
1. $2 x-15-\underline{x}=21+10 x$	
2. $x-15=21+10 x$	Simp
3. $-15=21+9 x$	
4. $-36=9 x$	
5. $-4=x$	

6. Given: $4 r-5=13+2 r$ Prove: $r=9$

Statement	Justification

If two lines are perpendicular, then they intersect to form a 90 degree angle.
Write the converse.
If they intersect to for m a 90° angle, then 2 lines are pert.
If the converse is true, write the statement as a biconditional.
Two lines are per. If and only If they intersect to form a 90° angle.

Section 2.5 - Reasoning in Algebra

Goals: Use properties of equality and congruence
Properties of Equality and Congruence

Property	Example	Explanation
Reflexive Property of Equality	$a=a \quad 5=5$	Any number is equal to itself.
Reflexive Property of Congruence	$\overline{R T} \cong \overline{R T}$ or $\angle 5 \cong \angle 5$	Any figure is congruent to itself.
Symmetric Property of Equality	If $a=b$, then $b=a$.	The sides of an equation can be switched.
Symmetric Property of Congruence	If $\overline{L M} \cong \overline{R T}$, then $\overline{R T} \cong \overline{L M}$.	The sides of a congruence statement can be switched.
Transitive Property of Equality	If $a=b$ and $b=c$, then $a=c$. $=5 \quad y=5, \text { so } x=y$	If two numbers are equal to the same number, then they are equal to each other.
Transitive Property of Congruence	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.	If two figures are congruent to the same figure, then they are congruent to each other.
Substitution Property of Equality	$\begin{aligned} & \sqrt{1 / x+y=z \text { and } x=5 \text {, then }} \\ & 5+y=z \text {. } \end{aligned}$	If two expressions are equal, one can replace the other in an equation.

Equal and Congruent - What's the Difference?

*Numbers can be equal to each other. *Figures can be congruent to each other.

The length of a segment and the measure of an angle are numbers. Numbers can be equal.

$$
\mathrm{MN}=\mathrm{RT} \quad m \angle \mathrm{ABC}=m \angle \mathrm{GHJ}
$$

Segments and angles are figures. Figures can be congruent.

$$
\overline{\mathrm{MN}} \cong \overline{\mathrm{RT}} \quad \angle \mathrm{ABC} \cong \angle \mathrm{GHJ}
$$

Which property of equality or congruence justifies each statement?

1. If $\overline{S T} \cong \overline{Q R}$, then $\overline{Q R} \cong \overline{S T}$. Symmetric Prop
2. $X Y=X Y$ Reflexive Prop. of $=$
3. If $x=9$ and $\frac{x}{T}+y=28$, then $9+y=28$. Sulost. prop. of $=$
4. If $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$ and $\angle \mathrm{ABC} \cong \angle \mathrm{GHJ}$
then $\angle \mathrm{DEF} \cong \angle \mathrm{GHJ}$.
Transitive Prop of \cong

Using Substitution and Transitive Properties

The Substitution Property and the Transitive Properties are used in proofs to combine two equations or congruence statements together.

Complete each statement using the given property.
Transitive Property of Congruence
If $\angle R S T \angle \angle U V W$ and $\angle U V W=\angle Y Z$, then $\angle R S T \cong \angle X Y Z$.

Substitution Property of Equality
If y y $+3 x=z$ and $y=4 z$ then $42+3 x=2$.
Transitive Property of Equality
If $m \angle 1+m \angle 2=180$ and $m \angle 3+m \angle 4-180$, then $m \angle 1+m \angle 2=m \angle 3+m \angle 4$

Substitution Property of Equality
If $\frac{A B}{2}+B C=A C$ and $A B=2 \cdot B C$ then $2 \cdot B C+B C=A C$

Assignment:

Concept 6 Worksheet \#1-due Tuesday 10/8

(back)

USING THE PROPERTIES OF EQUALTTY AND CONGRUENCE

Identify the property that is being shown in each statement.
7. Given that $m \angle \mathrm{BCA}=m \angle \mathrm{DBC}$ and $m \angle \mathrm{BCA}=m \angle \mathrm{ADB}$, we can conclude that $m \angle \mathrm{DBC}=m \angle \mathrm{ADB}$.
8. Given that $\overline{H I} \cong \overline{J K}$, we can conclude that
9. Given that $\angle 3 \cong \angle 4$ and $\angle 4 \cong \angle 5$, we can conclude that
10. Given that $X Y=M N$ and $X Y+Y Z=X Z$, we can state that $M N+Y Z=X Z$.
11. $m \angle \mathrm{ABC}=m \angle \mathrm{ABC}$

Use the given property to complete each statement.

12. Substitution Property of Equality: If $x+y=3 z$ and $x=2 z$, then \qquad $=$ \qquad
13. Substitution Property of Equality: If $L N=5 x+12$ and $x=2$, then $L N=$ \qquad .
14. Symmetric Property of Congruence: If $\overline{L M} \cong \overline{G H}$, then \qquad \cong \qquad
15. Symmetric Property of Equality: If $x=4$, then \qquad $=$ \qquad
16. Transitive Property of Congruence: If $\angle 1 \cong \angle 5$ and $\angle 2 \cong \angle 5$, then \qquad \cong \qquad .
17. Transitive Prop. of Equality: If $m \angle 1+m \angle 2=180$ and $m \angle 2+m \angle 3=180$,
then \qquad $-$ \qquad
18. Given: $2=4 x-x+8$
Prove: $x=-2$

Statement	Justification
1. $2=4 x-x+8$	Diven
$2.2=\underline{3 x}+8$	Simplify
$3 .-6=3 x$	Sulatraction Prop.
4. $-2=x$	Division Prop.
5. $x=-2$	Syminetric Prop. of

