3/2/20 - Warm Up Problem
Find the coordinates of each point after being rotated 270 degrees. Graph the rotated triangle.

$$
\begin{aligned}
r_{\left(270^{\circ}, 0\right)}(x, y) & =(y,-x) \\
A(1,3) & =(3,-1 \\
B(-4,2) & =(2,4 \\
C(-2,0) & =(0,2)
\end{aligned}
$$

Concept 22 - Dilations

Goals: find scale factors of dilations and draw dilations
Di̊laficion: a transformation that increases or decreases
SCALE FACTOR $=\frac{\text { dilated measure }}{\text { original measure }}$

ENLARGEMENT:
-increases in size
-scale factor is greater than 1

REDUCTION:

- decreases in size
-scale factor is
between 0 and 1

Is the dilation an enlargement or reduction? What is the scale factor?

$$
\text { Scale Factor }=\frac{\text { dilated measure }}{\text { original measure }}
$$

Function Notation for Dilations

$$
D^{(A)}(A) A^{\prime} \quad \text { means Point } A \text { has been dilated by }
$$ scale factor n and center at C

[^0]DILATIONS IN THE COORDINATE PLANE

- the origin is the center of the dilation in the coordinate plane
$D_{(n, 0)}(x, y) \rightarrow(n x, n y)$

Dilation in the Coordiante Plane
*multiply each point by the scale factor to graph a dilation
$\left.D_{(114)}\right)(\triangle A B C)$

$$
D_{(2,0)}(\triangle A B C)
$$

9.6 dilations.notebook

March 02, 2020
Do this one in your notes...

$$
\begin{gathered}
D_{(3,0)}(\triangle A B C) \\
A(2,1) \times 3=(6,3) \\
B(0,2) \times 3=(0,6) \\
C(3,3) \times 3=(9,9)
\end{gathered}
$$

Assignment:

Concept 22 Worksheet (1-9)
DILATIONS AND SCALE FACTOR
Determine whether the dilation is an enlargement or a reduction. Then, find its scale factor.
1.

2.

3.

[^0]: https://www.geogebra.org/m/NujwnT5Z

