

Section 8.1 - The Pythagorean Theorem
Goal: Draw diagrams to represent situations and apply the Pythagorean Theorem to solve problems

The largest mattress size available is the Alaskan King. It is 108 inches by 108 inches. A standard door opening is 80 inches by 36 inches. Would the mattress squeeze through?

$$
\begin{array}{r}
80^{2}+36^{2}=x^{2} \\
6400+1296=x^{2} \\
\sqrt{7696}=\sqrt{x^{2}} \\
87.7 \mathrm{in}=x
\end{array}
$$

Using the Pythagorean Theorem
A cell phone tower is supported by 3 wires. Each wire is attached to the tower 250 feet above the ground and anchored to the ground 100 feet from the base of the tower. How long is each wire?

$$
\begin{gathered}
250^{2}+100^{2}=x^{2} \\
62500+10000=x^{2} \\
\sqrt{72500} \sqrt{x^{2}} \\
269.3 \mathrm{ft}=x
\end{gathered}
$$

A painter has a 15 foot ladder. He leans it against a house with the bottom of the ladder 3 feet away from the bottom of the house. How far up on the house will the painter be able to reach?

$$
\begin{aligned}
x^{2}+3^{2} & =15^{2} \\
x^{2}+9 & =225 \\
-9 & -9 \\
\hline \sqrt{x^{2}} & =\sqrt{216} \\
x & =14.7 \mathrm{ft}
\end{aligned}
$$

Assignment:

Concept 19 Worksheet

(25-28)

Draw and label a diagram of the situation. Use the Pythagorean Theorem to answer the question. Show your work.
25. A soccer field is a rectangle 90 meters wide and 120 meters long. The coach asks players to run from one corner to the corner diagonally

26. The bottom of a 13 -foot straight ladder is set into the ground 5 feet away from a wall. When the top of the ladder is leaned against the wall, what is the distance above the ground it will reach?
27. A baseball "diamond" is actually a square with sides of 90 feet. If a runner tries to steal second base, how far must the catcher, at home plate, throw to get the runner "out"?
28. Jill's front door is 42 " wide and 84 " tall. She purchased a circular table that is 96 inches in diameter. Will the table fit through the front door? How do you know for sure?

