2.5 theorems & def.notebook

10/3/19 - Warm Up Problem

Given: AB = BC

Prove: AB = 1/2(AC)

A B

Statements	Justifications
1. AB = BC	GIVEN
2. AB + BC = AC	SEGMENTAPPITION
3. AB + AB = AC	SUBSTITUTION
4. 2AB = AC	Simp if y
5. $AB = 1/2(AC)$	Division

Concept 6 Worksheet #2

PROOFS USING POSTULATES

5. Given: 2AB = AC Prove: AB = BC

A B C

Statements	Justifications
1. 2AB = AC	
2. AB + BC = AC	
3. AB + BC = 2AB	
4. BC = AB	
5. AB = BC	

6. Given: $m \angle KOL = m \angle MON$

Prove: $m \angle KOM = m \angle LON$

[Statements	Justifications
	1 $m\angle KOL = m\angle MON$	
	2. $m\angle$ KOL + $m\angle$ LOM = $m\angle$ KOM	
4	$3 m \angle LOM + m \angle MON = m \angle LON$	
	4. $m\angle$ KOL + $m\angle$ MON = $m\angle$ LON	Substitution Prop.
	5. $m \angle KOM = m \angle LON$	Transtive Prop. of =

PROOFS USING POSTULATES AND DEFINITIONS

7. Given: \overrightarrow{QS} is an angle bisector of $\angle PQR$.

Prove:
$$m \angle PQS = \frac{1}{2} m \angle PQR$$

Statements	Justifications
1. \overrightarrow{QS} is an angle bisector of $\angle PQR$.	
$2. \ m \angle PQS = m \angle SQR$	
3. $m \angle PQS + m \angle SQR = m \angle PQR$	
$4. m \angle PQS + m \angle PQS = m \angle PQR$	
$5. \ 2 \cdot m \angle PQS = m \angle PQR$	
$6. \ \ m \angle PQS = \frac{1}{2} m \angle PQR$	

Concept 6 - Using Definitions and Theorems in Proofs <u>Using Definitions in a Proof</u>

- definitions will be used right after the given statement and sometimes at the end of the proof

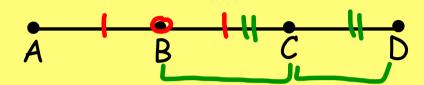
Definition of Congruent — Change — Was — W

You will use a definition right after your given statements if the given statements are written with words instead of equations.

Examples of Using Definitions

Statements	Justifications
1. B is the midpoint of AC	Given
2. AB = BC	Def. of Midpoint

Statements	Justifications
1.∠ABC and∠CBD are supplementary	Given
2.m LABC+ mLCBD= 180	Def. of Supp.

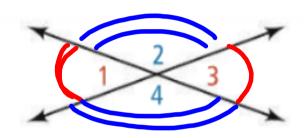

Statements	Justifications
1. ∠1≅ 2	Given
2.mLl=mL2	Det. of Congruent

Using Definitions in a Proof

Given: B is the midpoint of \overline{AC}

C is the midpoint of \overline{BD}

Prove: $\overline{AB} \cong \overline{CD}$


Statements	Justifications
1. B is the midpoint of AC	Given
2. C is the midpoint of BD	Given
3. AB = BC	Def. of Midpoint
$4\mathbf{BC} = \mathbf{CD}$	Def. of Midpoint
5. $AB = CD$	Transitive Prop. of = (3,4)
6. AB ≅ CD	Def. of Congruent

Using Theorems in Proofs

Postulate: an accepted statement of fact

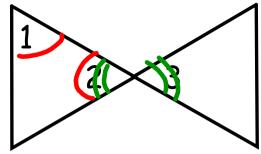
Theorem: a proven statement of fact

Vertical Angles Theorem Vertical angles are congruent.

- Theorems are used like postulates in proofs to introduce new equations when the given information is not enough

Proving the Vertical Angles Theorem

Given: $\angle 1$ and $\angle 2$ are vertical angles.


Prove: $\angle 1 \cong \angle 2$

Statements	Justifications \30
1. $\angle 1$ and $\angle 2$ are vertical	Given
$2 m \angle 1 + m \angle 3 = 180$	Linear Pair Postulate
$3.m_{2} + m_{2} = 180$	Linear Pair Postulate
$4. \ m \ge 1 + \underline{m} \ge 3 = m \ge 2 + \underline{m} \ge 3$	Transitive Prop. of = (2,3)
5. $m \ge 1 = m \ge 2$	Subtraction Prop.
6. ∠1 ≅ ∠2	Def. of Congruent

Using the Vertical Angles Theorem

Given: $\angle 1 \cong \angle 2$

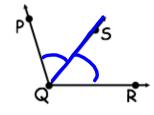
Prove: $\angle 1 \cong \angle 3$

Statements	Justifications
1. ∠1 ≅∠2	Given
2.∠2≅∠3	Vertical Angles Theorem
3. ∠1 ≅∠3	Transitive Property of \cong

It takes practice to know what step to do next when writing a proof. There is a general pattern you can follow...

ORDER OF STEPS FOR 2-COLUMN PROOFS

- 1. Given information Mark your given info on the diagram after writing it in the proof
- 2. **Definitions** If your given statements are sentences, turn them into equations with a definition.
- 3. **Postulates/Theorems** New, needed equations are written in using postulates and theorems.
- 4. Properties Manipulate and combine equations using properties.
 Substitution and Transitive Properties are ones to remember!


Assignment:

Concept 6 Worksheet #2 - due Wednesday 10/9 work on (7-10) today

PROOFS USING POSTULATES AND DEFINITIONS

7. Given: \overrightarrow{QS} is an angle bisector of $\angle PQR$.

Prove:
$$m \angle PQS = \frac{1}{2} m \angle PQR$$

Statements	Justifications
1. \overrightarrow{QS} is an angle bisector of $\angle PQR$.	Given
2. $m \angle PQS = m \angle SQR$	Def. Of bisector
3. $m \angle PQS + m \angle SQR = m \angle PQR$	Angle Add. Post.
4. $m \angle PQS + m \angle PQS = m \angle PQR$	Substitution Prop.
5. $2 \cdot m \angle PQS = m \angle PQR$	Simplify
6. $m \angle PQS = \frac{1}{2} m \angle PQR$	Divsion Prop.