1/30/20 - Warm Up Problem

Write each square root in simplified radical form.

Square the lengths of each side of each triangle. What do you notice?

Section 8.1 - The Pythagorean Theorem

Goal: Use the Pythagorean Theorem to find missing side lengths and to classify triangles

Psthegorean Theorem

If a triangle is a right triangle, then the sum of the squares of the lengths of the legs is equal to the square of the length

Using the Pythagorean Theorem

$$
\underset{\text { leg }}{a^{2}}+\underset{\text { leg }}{b^{2}}=\underset{\text { hypotenuse }}{c^{2}}
$$

$$
8^{2}+15^{2}=x^{2}
$$

$$
\begin{gathered}
\sqrt{289}=\sqrt{x^{2}} \\
17=x
\end{gathered}
$$

8.1 pythagorean thm.notebook

Using the Pythagorean Theorem

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 1 \\
& \text { leg } \\
& \text { leg hypotenuse } \\
& 7+x^{2}=25^{2} \\
& 49+x^{2}=625 \\
& \frac{-49}{\sqrt{x^{2}}=\sqrt{576}} \\
& x=24
\end{aligned}
$$

Writing in Simplified Radical Form
Find the value of x. Write your
Do this one in answer as a decimal and in simplified radical form.

$$
\begin{aligned}
x^{2}+11^{2} & =13^{2} \\
x^{2}+121 & =169 \\
-121 & -121 \\
\sqrt{x^{2}} & =\sqrt{48} \\
x & =6.9 \text { or } \sqrt{16 \cdot 3}
\end{aligned}
$$

Try it on your own...
Find the value of x. Write your answer in simplifed radical form if necessary.

$$
\begin{gathered}
x^{2}+9^{2}=12^{2} \\
x^{2}+81=144 \\
-81=-81 \\
\frac{\sqrt{x^{2}}}{}=\sqrt{63} \\
x=7.9
\end{gathered}
$$

$$
36+25=x^{2}
$$

$$
\sqrt{61} \neq \sqrt{x^{2}}
$$

$$
7.8=x
$$

Converse of the Pythagorean Theorem
If the sum of the squares of the lengths of two sides of a triangle is equal to the square of the length of the third side, then the triangle is a right triangle.

Is this a right triangle?

$$
\begin{array}{ll}
84^{2}+13^{2}=85^{2} & \\
7056+169 & =7225
\end{array}
$$

Are these right triangles?
If a triangle has sides of 16,48 , and 50?
NO

$$
\begin{aligned}
& 16^{2}+48^{2}=50^{2} \\
& 2560>2500
\end{aligned}
$$

If a triangle has sides of 6,11 , and 14 ?

NO

$$
\begin{gathered}
6^{2}+11^{2}=14^{2} \\
157<196
\end{gathered}
$$

CLASSIFYING TRIANGLES
If $\boldsymbol{a}^{2}+\boldsymbol{b}^{2}=\boldsymbol{c}^{2}$, then the triangle is \qquad right

If $\mathbf{a}^{2}+\mathbf{b}^{\mathbf{2}}>\mathbf{c}^{2}$, then the triangle is \qquad acute
 If $\mathbf{a}^{2}+\mathbf{b}^{2}<c^{2}$, then the triangle is obtuse.
 typ is too big

Classify these triangles in your notes.
Would the sides form a right, acute, or obtuse triangle?

1. $7,4,6$
2. $15,20,25$

$$
15^{2}+20^{2}=25^{2}
$$

3. $10,15,20$

$$
\begin{array}{r}
4^{2}+6^{2}=7^{2} \\
52749
\end{array}
$$

$$
10^{2}+15^{2}=20^{2}
$$

$625=625$

$$
325<400
$$

Acute
Right
obtuse

Assignment:

Concept 19 Worksheet

(13-24)
THE PYTHAGOREAN THEOREM: $a^{2}+b^{2}=c^{2}$
Find the value of x. Write your answers in simplified radical form if necessary.
13.

14.

15.

16.

17.

18.

CONVERSE OF THE PYTHAGOREAN THEOREM

Use the Pythagorean Theorem to determine if each set of sides would form a right, acute, or obtuse triangle. You must show your work.
19. $19,20,28$
20. $8,24,25$
21. $33,56,65$
22. $4,5,6$
23. $5,6,10$
24. $8,15,17$

