8/26/19 - Warm Up Problem
Solve each equation.

$$
\begin{gathered}
3 x+2 x-5=15 \\
5 x-5=15 \\
5 x=20 \\
x=4
\end{gathered}
$$

$$
\begin{gathered}
4^{3 x+}-x^{2 x}=-33^{2 x}+9^{12} \\
7 x=\frac{21}{7}=3 \\
x=3
\end{gathered}
$$

Concept 1 - Basic Geometric Figures

GOALS: IDENTIFY AND NAME POINTS, LINES PLANES, SEGMENTS, RAYS, AND ANGLES. DEFINE AND IDENTIFY COLLINEAR AND COPLANAR POINTS.

Basic Geometric Shapes

	Example	How to Name It	
5	$. J$	Named with one capital letter	- a location represented with a dot -has no shape or size
$\underset{3}{3}$			-straight path extending in opposite directions w/out end - has no thickness - contains infinite points
$\frac{x_{4}^{2}}{2}$		Named by 3 or more points not from the capital letter in one Plane ETS	flat surface extending w/out end - has no thickness - contains infinitely many lines
	Collinear:	Plare 7	
Coplanar: in the same plane			

Wame that geometric figure!
Write the name of each geometric figure in three different ways.

Postulate (Axiom): an accepted statement of fact

Postulate 1-1
Through any 2 points there is exactly one line.

Postulate 1-2

If two distinct lines intersect, then they intersect in exactly 1 point.

Using a straight arrow and a solid board, would constructing this figure be possible? Use geometric figures to
 describe why or why not.

Postulate 1-3

If two distinct planes intersect, then they intersect in exactly one line.

Postulate 1-4
Through any \square noncollinear points there is exactly one plane.

The prism is formed from intersecting planes.

- How many different planes are shown on the figure?
- Find a plane that contains points D, G, and K.
- Find a plane that contains points E, F, and G.

- Find a plane that contains points E, G, and K.

Naming Intersections

$\overleftrightarrow{J M}$ and $\overleftrightarrow{M L}$
$\overleftrightarrow{R Q}$ and $\overleftrightarrow{P Q}$
planes JNP and RQP $\overleftrightarrow{N P} N$
planes MLK and LQP

Assignment:

Concept 1 Worksheet - due Friday 8/30
(front only)

POINTS UNES AND PLANES

Use the figure below for Exercises 1-8. Note that $\overleftrightarrow{R N}$ goes through the plane at \boldsymbol{N}

1. What is the intersection of $\overrightarrow{C M}$ and $\overrightarrow{R N}$? N
2. Name three points that are collinear.
3. What is another way to name plane V ?
4. What is another way to name $\overrightarrow{C M}$?
5. Which point is not contained in Plane V ?
6. Name the line that contains point A.

7. Is it possible for one line to be shorter in length than another? Explain
8. Two points are in Plane P. Explain why the line containing the two points must also be in Plane P.

Postulate $1-4$ states that any three noncollinear points lie in one plane. Find the plane that contains the first three points listed. Then determine whether the fourth point is in that plane. Write coplanar or noncoplanar to describe the points.
9. P, T, R, N
10. P, O, S, N
11. T, R, N, U
12. P, O, R, S

Name the intersection of each pair of planes or lines.
Remember: Two lines intersect in exactly 1 point, but two planes intersect in exactly 1 line
13. planes $A O R$ and $Q R O$
14. $\overleftrightarrow{R Q}$ and $\overparen{R O}$
15. planes $A D R$ and $D C Q$
16. planes $B C D$ and $B C Q$
17. $\overrightarrow{O P}$ and $\overrightarrow{Q P}$

18. planes $A B P$ and $B C D$

