3/3/20 - Warm Up Problem Write a composition of transformations that would map Triangle $A B C$ onto Triangle DEF $0,-5$)(Ryaris) (ABC $-\Delta)$

Concept 22 - Similarity Transformations

Goal: write a composition of transformations to map a figure onto a similar figure

Are these triangles similar? How can you tell?

$$
T
$$

$$
A(0,0) \times 3=(0,0)
$$

$$
\begin{aligned}
& C(1,1) \times 3=(3,3) \\
& B(3,0) \times 3=(9,0)
\end{aligned}
$$

Similarity Transformation: a composition of a dilation and one or more rigid motions

- you can prove two shapes are similar by writing a similarity transformation

Write a composition

 of transformations to map $\triangle R S T$ onto $\triangle P Y Z$.Step 1: Dilate the figures to be the same size
Step 2: Move one figure onto the other using translations, rotations, and reflections $\left(R_{Y}=-\times D_{2}\right)(\Delta R S T)^{*}$

In your notes...
Write a composition of transformations to map ABCD onto MNHP.

$$
\left(R_{y \text {-axs }} \circ D\right)
$$

Assignment:

finish Concept 22 Worksheet

For each graph, write the composition of transformations that map $\triangle F G H$ to $\triangle Q R S$ sing function notation.

16. Which similarity transformation does not map $\triangle \mathrm{PQR}$ onto $\triangle \mathrm{STU}$?
a. $\left.\left(\mathrm{r}_{\left(180^{\circ}, 0\right.}\right)^{\circ} \mathrm{D}_{2}\right)(\mathrm{PPQR})$
b. $\left(\mathrm{D}_{2}{ }^{\circ} \mathrm{r}_{180^{\circ}, \mathrm{o}}\right)(\Delta \mathrm{PQR})$
c. $\left(\mathrm{D}_{2}{ }^{\circ} \mathrm{R}_{\mathrm{x} \text {-axis }}{ }^{\circ} \mathrm{R}_{\mathrm{y} \text {-axis }}\right)(\Delta \mathrm{PQR})$
d. $\left(\mathrm{D}_{2}{ }^{\circ} \mathrm{R}_{\mathrm{x} \text {-axis }}{ }^{\circ} \mathrm{r}_{(90} \stackrel{\circ}{ }(\mathrm{O})(\Delta \mathrm{PQR})\right.$

17. The composition $\left(\mathrm{T}_{<, 1}>^{\circ} \mathrm{D}_{3}\right)$ describes a similarity transformation. If the order of the composition is changed to be ($\mathrm{D}_{3} \circ \mathrm{~T}_{<, 1>}$), does that describe the same transformation? Explain.

