3/2/20 - Warm Up Problem
You look up at a 40 degree angle of elevation to see your cat stuck in a tree. The tree is 25 feet away from you. How tall is the tree?

$$
\begin{gathered}
\operatorname{Tan}(40)=\frac{x}{25} \\
x=25 \cdot \operatorname{Tan}(40) \\
x=21 \mathrm{ft}
\end{gathered}
$$

$$
x=1 \quad \overbrace{\sim}^{1}
$$

Concept 22 - Dilations
Goals: find scale factors of dilation and draw dilation
 the size of a figure - NOT A RIGID MOTION

$$
\text { SCALE FACTOR }=\frac{\text { dilated measure }}{\text { original measure }}
$$

ENLARGEMENT:
-increases in size
-scale factor is greater than 1

REDUCTION:

- decreases in size
-scale factor is between 0 and 1

Find the scale factor of each dilation. Is it an enlargement or reduction? Scale Factor $=\frac{\text { dilated measure }}{\text { original measure }}$

Function Notation for Dilations

$D_{(n, C)}(A)=A^{\prime} \quad \begin{aligned} & \text { means Po } \\ & 2, e_{\text {scaler }} \\ & \text { scale factor }\end{aligned}$ Properties of Dilations

1) The center of the dilation (point C) does not move. $\left(C=C^{\prime}\right)$
2) For any other point R, the distance from the center = original distance multiplied by the scale factor. ($C R^{\prime}=n \bullet C R$)

3) Dilations do not change angle measures.

Assignment:

Concept 22 Worksheet (front)
Determine whether the dilation is an enlargement or a reduction. Then, find its scale factor.

$\triangle A B C$ has vertices $A(-2,2), B(2,0)$, and $C(1,-2)$. Draw the image formed by each composition of transformations.

