3/2/20 - Warm Up Problem

You look up at a 40 degree angle of elevation to see your cat stuck in a tree. The tree is 25 feet away from you. How

Concept 22 - Dilations

Goals: find scale factors of dilations and draw dilations

Dilation: a transformation that increases or decreases the size of a figure - NOT A RIGID MOTION

SCALE FACTOR = dilated measure original measure

ENLARGEMENT:

- -increases in size
- -scale factor is greater than 1

REDUCTION:

- decreases in size
- -scale factor is between 0 and 1

Find the scale factor of each dilation.

Is it an enlargement or reduction?

Scale Factor = dilated measure original measure

Function Notation for Dilations

$$D_{(n,C)}(A) = A'$$

means Point A has been dilated by scale factor **n** and center at **C**

Properties of Dilations

- 1) The center of the dilation (point C) does not move. (C = C')
- 2) For any other point R, the distance from the center = original distance multiplied by the scale factor.

$$(CR' = n \bullet CR)$$

- the origin is the center of the dilation in the coordinate plane

D(n, 0)(x,y)→(nx, ny) + multiply each point

Dy the Scale Factor

Assignment:

Concept 22 Worksheet (front)

Determine whether the dilation is an enlargement or a reduction. Then, find its scale factor.

1.

2.

3.

Draw the image of each figure according to the given rule.

4.
$$D_2(\Delta ABC)$$

5. $D_2(\Delta ABC)$

6. $D_{\underline{1}}(\Delta ABC)$

 ΔABC has vertices $\underline{A(-2,2)}$, $\underline{B(2,0)}$, and $\underline{C(1,-2)}$. Draw the image formed by each composition of transformations.

7.
$$(R_{y\text{-axis}} \circ D_2)(\Delta ABC)$$

8. $(T_{<2,-2>} \circ D_{0.5})(\Delta ABC)$

9. $(r_{(90^{\circ}, o)} \circ D_{1.5})$ ($\triangle ABC$)

