7.4 similarity right triangles. notebook

Section 7.4 - Similarity in Right Triangles Goal: Calculate the geometric mean and simplify square roots

Geometric Mean

The geometric mean of two positive numbers a and b is the positive number x that satisfies $\frac{a}{x}-\frac{x}{b}$

FIND THE GEOMETRIC MEAN OF 12 AND 27.

$x=18$

Simplifying Radicals
If doing a square root results in an irrational number, there are 2 ways to write the number - as a rounded decimal or as a simplified radical.
To simplify a radical, you need to remember which numbers are perfect square numbers.

PERFECT SQUARE NUMBERS - whole numbers whose square root is a whole number
$4,9,16,25,36,49,64,81,100 \ldots$

$$
\begin{array}{ll}
2^{2}= & 7^{2}= \\
3^{2}= & 8^{2}= \\
4^{2}= & 9^{2}= \\
5^{2}= & 10^{2}= \\
6^{2}= & 11^{2}=
\end{array}
$$

Writing in Simplified Radical Form

1) Find a perfect square that divides into the radicand. - look for the largest perfect square that divides in
2) Split the radicand into two factors.
3) Simplify the perfect square factor and move the result outside the radical symbol.

$$
\begin{aligned}
& \sqrt{12}=\sqrt{4 \cdot 3}=2 \sqrt{3} \\
& \sqrt{18}=\sqrt{9 \cdot 2}=3 \sqrt{2} \\
& \sqrt{72}=\sqrt{36 \cdot 2}=6 \sqrt{2} \\
& \sqrt{9 \cdot 8}=3 \sqrt{8} \\
& \sqrt{400}=20 \quad \sqrt{4 \cdot 2} \\
& \sqrt{100 \cdot t}
\end{aligned}
$$

EXAMPLES: Simplify each radical.

1. $\sqrt{50}$
2. $\sqrt{300}$
3. $\sqrt{320}$
$\sqrt{25} \cdot 2$
$\sqrt{100 \cdot 3}$
$\sqrt{64.5}$
$5 \sqrt{2}$
$10 \sqrt{3}$
$8 \sqrt{5}$

Find the geometric mean for the pair of numbers given.

2 and 22

$$
\begin{aligned}
& \frac{2}{x}=\frac{x}{22} \\
& \sqrt{x^{2}}=\sqrt{44} \\
& x=\sqrt{4 \cdot 11} \\
& x=2 \sqrt{11}
\end{aligned}
$$

8 and 10

Assignment:
Concept 18 Worksheet
(front side only)
(I) $\sqrt{72}=\sqrt{36 \cdot 2}=6 \sqrt{2}$

